ORIGINAL ARTICLE |
|
Year : 2018 | Volume
: 8
| Issue : 3 | Page : 208-211 |
|
Comparative evaluation of temperature changes on tissue-dissolution ability of sodium hypochlorite, calcium hypochlorite, and chlorine dioxide
Alok Kumar Basaiwala, Karthik Shetty, Kartik S Nath
Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences, Mangalore, Karnataka, India
Correspondence Address:
Dr. Karthik Shetty Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences, Mangalore (Manipal Academy of Higher Education), Light House Hill Road, Mangalore - 575 001, Karnataka India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/sej.sej_99_17
|
|
Aim: The present study evaluated the tissue-dissolution ability of 3% sodium hypochlorite (NaOCl) and two other irrigants, namely, 10% calcium hypochlorite and 13.8% chlorine dioxide (ClO2) at different temperatures, keeping isotonic saline as control.
Materials and Methods: The bovine muscle tissue specimens which were prepared for the study, were weight adjusted (50 ± 5 mg). One hundred and twenty frozen tissue samples were distributed equitably between the four groups. The experiments were conducted at three different temperature slabs, that is, room temperature, 37°C and 45°C, respectively. The 30 tissue samples in each group were immersed in 5 mL of the allocated test solution at the desired temperature for a total of 20 min, with change of solution done every 2 min. At the end of the 20-min experiment period, the tissues were carefully removed, blotted dry on absorbent paper, and weighed on a precision balance. The percentage weight loss of the specimens was then recorded for the experiment period.
Results: The results of this study showed that at room temperature, the 3% NaOCl solution presented maximum tissue dissolution, whereas at 37°C, 13.8% ClO2solution was most effective in dissolving the tissue. However, when the temperature was raised to 45°C, all the three test solutions were equally effective in their tissue-dissolving capacity.
Conclusion: The present study showed that heating the solutions enhances their ability to dissolve organic material. |
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|